首页> 中文期刊> 《大气和气候科学(英文)》 >Attenuation of UV-C Solar Radiation as a Function of Altitude(0≤z≤100 km):Rayleigh Diffusion and Photo Dissociation of O_(2) Influence

Attenuation of UV-C Solar Radiation as a Function of Altitude(0≤z≤100 km):Rayleigh Diffusion and Photo Dissociation of O_(2) Influence

         

摘要

In this paper, we present an analysis of attenuation for UV-C radiation () as a function of the altitude z () by calculating the interaction ratio between the UV-C radiation and the molecular species susceptible of interact with UV-C radiation. The Rayleigh scattering spectral cross sections were calculated, the UV-C spectral cross sections of the species susceptible of interact with UV-C radiation and the UV extraterrestrial (ETR) solar spectrum were standardized with wavelength steps of 1 nm, and The International Standard Atmosphere model (ISO 1972) was adapted to calculate the molecular density. These data were utilized to calculate the photodissociation and Rayleigh scattering ratios as a function of the altitude and to determine to what measure the photodissociation and the Rayleigh diffusion were determinants of the attenuation of UV-C radiation. It became clear that the photo dissociation of O2 is the primordial mechanism of attenuation for the UV-C radiation, but the Rayleigh diffusion appears like a mechanism that encreases the photon flux, raising the performance of the O2 photodissociation. The attenuation capacities of N2O, CO2 and water vapor (H2O) over the UV-C radiation are all similar, although smaller (less than 0.6%), and this is due to their low concentration. The O3, has the theoretical greater attenuation capacity, but it is found in mid-range altitudes? (), where the residual UV-C photons has almost vanished by O2 photo dissociation or Rayleigh diffusion, so the real effect over the UV-C attenuation is minimum.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号