首页> 中文期刊> 《大气和气候科学(英文)》 >Evaluation and Correction of Ground-Based Microwave Radiometer Observations Based on NCEP-FNL Data

Evaluation and Correction of Ground-Based Microwave Radiometer Observations Based on NCEP-FNL Data

         

摘要

Consistency between the brightness temperatures observed with a ground-based microwave radiometer and the brightness temperatures computed by forward modeling is important in many different data applications. Using the National Centers for Environmental Prediction-Final Operational Global Analysis (NCEP-FNL) dataset as a reference, the brightness temperature was obtained through the radiation transfer model for forward calculation. The problem of segmented features in long time of observational data from ground-based microwave radiometers (the so-called “jumping problem”) was identified. By analyzing the deviation and correlation between the observational bright temperature data and the forward calculated data under clear sky conditions, a revised scheme is proposed for the bright temperature observational data. Data obtained with a ground-based microwave radiometer in Beijing from January 1, 2010 to December 31, 2011 around the date of liquid nitrogen calibration show that the correlation between the observed brightness temperatures and the forward computed brightness temperatures is better after correction, especially at 28 and 30 GHz. The “jumping” problem in the observational data for the brightness temperature is eliminated after correction and the time continuity of the observational data and its consistency with the forward calculated data based on the NCEP-FNL dataset are improved. The proposed correction scheme can be used both for real-time data quality control and to improve the accuracy of historical datasets obtained with poorly calibrated microwave radiometers or radiometers working in polluted environments.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号