首页> 中文期刊> 《镁合金学报(英文)》 >Atomistic calculations of surface and interfacial energies of Mg_(17)Al_(12)-Mg system

Atomistic calculations of surface and interfacial energies of Mg_(17)Al_(12)-Mg system

         

摘要

It is well known that precipitation hardening in magnesium(Mg)alloys is far less effective than in aluminum alloys.Thus,it is important to understand the surface and interfacial structure and energetics between precipitates and matrix.In upscale modeling of magnesium alloys,these energy data are of great significance.In this work,we calculated the surface and interfacial energies of Mg_(17)Al_(12)-Mg system by carefully selecting the surface or interface termination,using atomistic simulations.The results show that,the higher fraction of Mg atoms on the surface,the lower the surface energy of Mg_(17)Al_(12).The interfacial energy of Mg/Mg_(17)Al_(12)was calculated in which the Burgers orientation relationship(OR)was satisfied.It was found that the(011)P(0002)Mg interface has the lowest interfacial energy(248 mJ/m 2).Because the Burgers OR breaks when{10¯12}twin occurs,which reorients the matrix,the interfacial energy for Mg_(17)Al_(12)and a{10¯12}twin was also calculated.The results show that after twinning,the lowest interfacial energy increases by 244 mJ/m^(2),and the interface becomes highly incoherent due to the change in orientation relationship between Mg_(17)Al_(12)and the matrix.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号