首页> 中文期刊> 《线性代数与矩阵理论研究进展(英文)》 >Decompositions of Some Special Block Tridiagonal Matrices

Decompositions of Some Special Block Tridiagonal Matrices

             

摘要

In this paper, we present a unified approach to decomposing a special class of block tridiagonal matrices K (α ,β ) into block diagonal matrices using similarity transformations. The matrices K (α ,β )∈ Rpq× pq are of the form K (α ,β = block-tridiag[β B,A,α B] for three special pairs of (α ,β ): K (1,1), K (1,2) and K (2,2) , where the matrices A and B, A, B∈ Rp× q , are general square matrices. The decomposed block diagonal matrices (α ,β ) for the three cases are all of the form: (α ,β ) = D1 (α ,β ) ⊕ D2 (α ,β ) ⊕---⊕ Dq (α ,β ) , where Dk (α ,β ) = A+ 2cos ( θk (α ,β )) B, in which θk (α ,β ) , k = 1,2, --- q , depend on the values of α and β. Our decomposition method is closely related to the classical fast Poisson solver using Fourier analysis. Unlike the fast Poisson solver, our approach decomposes K (α ,β ) into q diagonal blocks, instead of p blocks. Furthermore, our proposed approach does not require matrices A and B to be symmetric and commute, and employs only the eigenvectors of the tridiagonal matrix T (α ,β ) = tridiag[β b, a,αb] in a block form, where a and b are scalars. The transformation matrices, their inverses, and the explicit form of the decomposed block diagonal matrices are derived in this paper. Numerical examples and experiments are also presented to demonstrate the validity and usefulness of the approach. Due to the decoupled nature of the decomposed matrices, this approach lends itself to parallel and distributed computations for solving both linear systems and eigenvalue problems using multiprocessors.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号