首页> 中文期刊> 《材料科学与化学工程(英文)》 >Experimental and Theoretical Investigations on Copper Corrosion Inhibition by Cefixime Drug in 1M HNO3Solution

Experimental and Theoretical Investigations on Copper Corrosion Inhibition by Cefixime Drug in 1M HNO3Solution

         

摘要

Cefixime, a third-generation semi-synthetic cephalosporin antibiotic was used as a copper corrosion inhibitor in 1M HNO3 solution. The study was conducted through the weight loss technique at 298 - 318 K and theoretical studies based on quantum chemistry. The studied drug inhibited the corrosion of copper in 1M HNO3 over the cefixime concentration range (0.02 - 2 mM). The inhibition efficiency increased with an increase in the inhibitor concentration to reach 91.07% at 2 mM, but decreased with an increase in temperature. The thermodynamic functions related to the adsorption of cefixime on the copper surface and that of the metal dissolution were computed and analyzed. The results point out spontaneous adsorption, mainly through a physisorption mechanism following Langmuir adsorption isotherm model and an endothermic dissolution process. Quantum chemical calculations were also performed at B3LYP level with 6-31G (d, p) basis set and lead to molecular descriptors such as EHOMO (energy of the highest occupied molecular orbital), ELUMO (energy of the lowest unoccupied molecular orbital), ΔE (energy gap) and μ (dipole moment). The global reactivity descriptors such as χ (electronegativity), χ (global hardness), S (global softness), and ω (electrophilicity index) were derived using Koopman’s theorem and analyzed. The local reactivity parameters, including Fukui functions and dual descriptors were determined and discussed. Experimental and theoretical results were found to be in good agreement.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号