首页> 外文期刊>表面工程材料与先进技术期刊(英文) >Physical Alloying of Plasma Metallization Carbide Nanocomposite Coating by Allotropic Carbon Nanostructures
【24h】

Physical Alloying of Plasma Metallization Carbide Nanocomposite Coating by Allotropic Carbon Nanostructures

机译:各种碳纳米结构等血浆金属化碳化物纳米复合涂层的物理合金

获取原文
获取原文并翻译 | 示例
       

摘要

The fundamental scientific problem for micro- and nano-electronics has been solved—methods for creating and investigating properties of physically doped materials with spatially inhomogeneous structure at the micro- and nano-meter scale have been developed. For the application of functional nanocomposite film coatings based on carbides of various transition metals structured by nanocarbon, for the first time in the world, we developed a new technique for their plasma deposition on a substrate without the use of reaction gases (hydrocarbons such as propane, acetylene, etc.). We have created nanostructured film materials, including those with increased strength and wear resistance, heterogeneous at the nanoscale, physically doped with nanostructures—quantum traps for free electrons. We learned how to simultaneously spray (in a plasma of a stationary magnetron discharge) carbides and graphite from a special mosaic target (carbide + carbon) made mechanically. As a result of such stationary sputtering of carbides and carbon, plasma nanostructured coatings were obtained from nanocarbides, metal nanocrystals and nanocarbon. Our design of such a target made it possible to intensively cool it in the magnetron body and spray its parts (carbide + carbon) simultaneously with a high power density of a constant plasma discharge—in the range of values from 40 W/cm2 to 125 W/cm2. Such sputtering with a change in the power or the initial relative surface areas of various parts of the mosaic target (carbon and carbide) made it possible to change the average density of carbide, metal and carbon in a nanostructured (nanocarbon and metal nanostructures) coating. The changed relative density of various components of the nanocomposite (nanostructures of carbide, metal, and carbon in the form of graphite) significantly affected the physical properties of the nanocomposite coating. The creating method of multiphase nanostructured composite coatings (based on carbides of transition metals) with high hardness of 30 GPa, a low coefficient of friction to dry 0.13 - 0.16, with high heat resistance up to 3000°C and thermal stability in the nanocrystalline state over 1200°C is developed. It is established that the presence of nanographite in the composite significantly improves the impact strength and extends the range of possible applications, compared with pure carbides. The solution to this problem will allow creating new nanostructured materials, investigating their various physical parameters with high accuracy, designing, manufacturing and operating devices with new technical and functional capabilities, including for the nuclear industry and rocket science.
机译:已经开发出用于微型和纳米电子的基本科学问题 - 已经开发出用于在微型和纳米米级下具有空间不均匀结构的物理掺杂材料的制造和研究物理掺杂材料的方法。对于基于纳米碳结构的各种过渡金属的碳化物在世界上的各种过渡金属的碳化物中施加,我们在不使用反应气体(如丙烷(如丙烷)的情况下,我们开发了一种新的等离子体沉积的新技术(丙烷如丙烷,乙炔等)。我们已经创造了纳米结构薄膜材料,包括具有增加的强度和耐磨性,在纳米级的异质性,物理掺杂有用于游离电子的纳米结构 - 量子陷阱。我们学习了如何从机械制造的特殊马赛克靶(碳化物+碳)同时喷射(在静止磁控磁阻放电)碳化物和石墨中。由于碳化物和碳的静止溅射,从纳米碳,金属纳米晶体和纳米碳中获得等离子体纳米结构涂层。我们的这种目标的设计使得可以在磁控管体中强烈冷却,并在恒定等离子体放电的高功率密度 - 在40W / cm2至125的值范围内同时喷洒其部件(碳化物+碳) w / cm2。这种溅射具有电力或磁性靶(碳和碳化物和碳化物)各部分的电力或初始相对表面积的溅射使得可以改变纳米结构(纳米碳和金属纳米结构)涂层中的碳化物,金属和碳的平均密度。纳米复合材料的各种组分的改变的相对密度(石墨形式的碳化物,金属和碳的纳米结构)显着影响了纳米复合涂层的物理性质。多相纳米结构复合涂层(基于过渡金属碳化物)的制造方法,具有30GPa的高硬度,干燥0.13-0.16的低摩擦系数,高耐热性高达3000&#176c和纳米晶体状态的热稳定性开发了超过1200&#176c。建立复合材料中的纳米纳米的存在显着提高了冲击强度,并与纯碳化物相比,延长了可能的应用范围。该问题的解决方案将允许创建新的纳米结构材料,以高精度,设计,制造和操作设备调查其各种物理参数,具有新的技术和功能能力,包括核工业和火箭科学。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号