首页> 外文期刊>铁道工程科学:英文版 >Experimental prototyping of the adhesion braking control system design concept for a mechatronic bogie
【24h】

Experimental prototyping of the adhesion braking control system design concept for a mechatronic bogie

机译:用于机电转向架的粘附制动控制系统设计概念的实验原型

获取原文
获取原文并翻译 | 示例
       

摘要

The dynamic parameters of a roller rig vary as the adhesion level changes.The change in dynamics parameters needs to be analysed to estimate the adhesion level.One of these parameters is noise emanating from wheel–rail interaction.Most previous wheel–rail noise analysis has been conducted to mitigate those noises.However,in this paper,the noise is analysed to estimate the adhesion condition at the wheel–rail contact interface in combination with the other methodologies applied for this purpose.The adhesion level changes with changes in operational and environmental factors.To accurately estimate the adhesion level,the influence of those factors is included in this study.The testing and verification of the methodology required an accurate test prototype of the roller rig.In general,such testing and verification involve complex experimental works required by the intricate nature of the adhesion process and the integration of the different subsystems(i.e.controller,traction,braking).To this end,a new reduced-scale roller rig is developed to study the adhesion between wheel and rail roller contact.The various stages involved in the development of such a complex mechatronics system are described in this paper.Furthermore,the proposed brake control system was validated using the test rig under various adhesion conditions.The results indicate that the proposed brake controller has achieved a shorter stopping distance as compared to the conventional brake controller,and the brake control algorithm was able to maintain the operational condition even at the abrupt changes in adhesion condition.
机译:滚轮钻机的动态参数随着粘附水平的变化而变化。需要分析动力学参数的变化以估计粘附水平。这些参数的内部是噪声从轮轨相互作用产生的噪声。最前面的最后一轮轨噪声分析已经进行了减轻那些噪声。然而,在本文中,分析了噪声以估计车轮轨道接触界面的粘附条件与此目的的其他方法组合。粘附水平随着操作和环境的变化而变化准确估计粘附水平,这些因素的影响包括在本研究中。方法的测试和验证需要滚子钻井座的准确测试原型。在一起,这种测试和验证涉及所需的复杂实验工程粘附过程的复杂性质和不同子系统的集成(Iecontroller,牵引,制动)。至结束,开发了一种新的减垢辊钻,以研究车轮和轨道滚子接触之间的粘附。在本文中描述了这种复杂机电一体化系统的各种阶段。拟议的制动控制系统,繁殖在各种粘合条件下使用试验器进行验证。结果表明,与传统的制动控制器相比,所提出的制动控制器已经实现了更短的停止距离,并且制动控制算法即使在突然变化下也能够保持操作状态粘附条件。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号