首页> 中文期刊> 《应用数学(英文)》 >Plasma Model of Generation and Slip of Linear Defects in Crystalline Materials

Plasma Model of Generation and Slip of Linear Defects in Crystalline Materials

         

摘要

In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distribution of pairs of photoelectrons and cations;these electrons with velocities Ve create δ-collisions with cold plasma from free electrons and holes with masses me and mh (mh  ≫ me), they emit and absorb longitudinal electron plasma waves whose phase velocities wpw / kpw are close to or are equal to the velocities Ve, while the frequencies wpw and wave numbers kpw of the wave packet of plasma waves are complex, the short-wave components of this wave packet at kpw ⋅ ae ≫ 1 (ae -Debye screening radius) decay in the core linear defect, and its long-wavelength components propagate in the region of the medium surrounding the core of the defect at kpw ⋅ ae ≅ 1. When a defect is generated, the distribution of cations under the influence of the internal Coulomb field shifts to the region of the first peak (protrusion) of the electron plasma wave, thereby forming a vacancy valley. When sliding under the influence of an external electric field, a cationic plasma wave consisting of a vacancy valley and two cationic protrusions moves against the background of an additional potential relief created by an electron plasma wave near the core of the defect. It has been shown that δ-collisions create flows of dynamic large-scale correlations of plasma fluctuations in the form of asymptotics of different-time correlators of density and potential fluctuations as t → +∞.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号