首页> 中文期刊> 《材料物理与化学进展(英文)》 >Bi-Modal Failure Mechanism of Rolling Contact Bearings

Bi-Modal Failure Mechanism of Rolling Contact Bearings

         

摘要

The theory of failure of rolling contact bearings is based on fluctuating high level loading and material fatigue. This theory is unimodal, considering only the solid components of the bearing, and ignoring the liquid phase, which is the lubricant. Bearing life is rather dispersed, reaching a ratio of 20 between the extreme values. Since this theory was established, several exceptional phenomena were detected that could not be explained by it, such as: 1) Pitting damage beyond the contact path;2) Detrimental effect of a minute quantity of water in the lubricant on bearing life. 25 ppm of water in the lubricant brought about shorter bearing life by over than 30%. The bimodal failure theory considers both solid and liquid bearing components. The damaging process of the lubricant evolves from its cavitation. During this process vapor filled cavities are formed in low pressure zones. When these cavities reach high pressure zones they implode exothermally. These implosions cause local high pressure pulses reaching 30,000 at accompanied by a temperature rise of about 2000 degrees K [1]. This paper includes cavitation erosion test results on stainless steel samples by vibratory and water tunnel test rigs. Various methods of lubricant dehydration are presented and evaluated. The main conclusion from this analysis is the use of water-free lubricants, for long life of RC bearings and more uniform service life thereof.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号