首页> 中文期刊> 《现代物理(英文)》 >Generalization via Ultrahyperfunctions of a Gupta-Feynman Based Quantum Field Theory of Einstein’s Gravity

Generalization via Ultrahyperfunctions of a Gupta-Feynman Based Quantum Field Theory of Einstein’s Gravity

         

摘要

Ultrahyperfunctions (UHF) are the generalization and extension to the complex plane of Schwartz’ tempered distributions. This effort is an application to Einstein’s gravity (EG) of the mathematical theory of convolution of Ultrahyperfunctions developed by Bollini et al. [1] [2] [3] [4]. A simplified version of these results was given in [5] and, based on them;a Quantum Field Theory (QFT) of EG [6] was obtained. Any kind of infinities is avoided by recourse to UHF. We will quantize EG by appealing to the most general quantization approach, the Schwinger-Feynman variational principle, which is more appropriate and rigorous that the popular functional integral method (FIM). FIM is not applicable here because our Lagrangian contains derivative couplings. We follow works by Suraj N. Gupta and Richard P. Feynman so as to undertake the construction of an EG-QFT. We explicitly use the Einstein Lagrangian as elaborated by Gupta [7], but choose a new constraint for the ensuing theory. In this way, we avoid the problem of lack of unitarity for the S matrix that afflicts the procedures of Gupta and Feynman. Simultaneously, we significantly simplify the handling of constraints, which eliminates the need to appeal to ghosts for guarantying unitarity of the theory. Our approach is obviously non-renormalizable. However, this inconvenience can be overcome by appealing to the mathematical theory developed by Bollini et al. [1] [2] [3] [4] [5]. Such developments were founded in the works of Alexander Grothendieck [8] and in the theory of Ultradistributions of Jose Sebastiao e Silva [9] (also known as Ultrahyperfunctions). Based on these works, an edifice has been constructed along two decades that are able to quantize non-renormalizable Field Theories (FT). Here we specialize this mathematical theory to discuss EG-QFT. Because we are using a Gupta-Feynman inspired EG Lagrangian, we are able to evade the intricacies of Yang-Mills theories.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号