首页> 中文期刊> 《微系统与纳米工程(英文)》 >Micro 3D printing of a functional MEMS accelerometer

Micro 3D printing of a functional MEMS accelerometer

         

摘要

Microelectromechanical system(MEMS)devices,such as accelerometers,are widely used across industries,including the automotive,consumer electronics,and medical industries.MEMS are efficiently produced at very high volumes using large-scale semiconductor manufacturing techniques.However,these techniques are not viable for the cost-efficient manufacturing of specialized MEMS devices at low-and medium-scale volumes.Thus,applications that require custom-designed MEMS devices for markets with low-and medium-scale volumes of below 5000-10,000 components per year are extremely difficult to address efficiently.The 3D printing of MEMS devices could enable the efficient realization and production of MEMS devices at these low-and medium-scale volumes.However,current micro-3D printing technologies have limited capabilities for printing functional MEMS.Herein,we demonstrate a functional 3D-printed MEMS accelerometer using 3D printing by two-photon polymerization in combination with the deposition of a strain gauge transducer by metal evaporation.We characterized the responsivity,resonance frequency,and stability over time of the MEMS accelerometer.Our results demonstrate that the 3D printing of functional MEMS is a viable approach that could enable the efficient realization of a variety of custom-designed MEMS devices,addressing new application areas that are difficult or impossible to address using conventional MEMS manufacturing.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号