首页> 中文期刊> 《光学与光子学期刊(英文)》 >Design and Numerical Analysis of Ultra-High Negative Dispersion, Highly Birefringent Nonlinear Single Mode Core-Tune Photonic Crystal Fiber (CT-PCF) over Communication Bands

Design and Numerical Analysis of Ultra-High Negative Dispersion, Highly Birefringent Nonlinear Single Mode Core-Tune Photonic Crystal Fiber (CT-PCF) over Communication Bands

         

摘要

This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10-2 at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 104 at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W-1⋅Km-1 for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号