首页> 中文期刊> 《电子测量技术 》 >基于CNN-BiLSTM网络的锂离子电池健康状态检测方法

基于CNN-BiLSTM网络的锂离子电池健康状态检测方法

             

摘要

锂离子电池健康状态(SOH)是锂离子电池可靠运行的重要参考指标,为提高电池健康状态检测的精确性,提出一种基于CNN-BiLSTM网络的锂电池健康状态检测方法。该方法使用CALCE锂离子电池容量衰减数据集,提取电池健康因子(HI)作为模型输入数据,同时利用灰色关联分析法(GRA)验证HI选取的合理性,采用卷积神经网络(CNN)、双向长短期记忆神经网络(BiLSTM)构建网络模型,对电池容量进行预测,实现锂离子电池健康状态检测。实验结果表明,该方法SOH检测的平均绝对误差为1.3%,均方根误差为1.78%,精确度和可靠性较高。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号