首页> 中文期刊> 《健康(英文)》 >Water Quality Evaluation of Chapurson Valley in Hunza Nagar, Gilgit Baltistan, Pakistan, Based on Statistical Analysis and Water Quality Index

Water Quality Evaluation of Chapurson Valley in Hunza Nagar, Gilgit Baltistan, Pakistan, Based on Statistical Analysis and Water Quality Index

         

摘要

Water borne ailments are of serious public health concern in Gilgit Baltistan’s (GB) region of Pakistan. The pollution load on the glacio-fluvial streams and surface water resources of the Chapurson Valley in the Hunza Nagar area of the GB is increasing as a result of anthropogenic activities and tourism. The present study focuses on the public health quality of drinking water of Chapurson valley. The study addressed the fundamental drinking water quality criteria in order to understand the state of the public health in the valley. To ascertain the current status of physico-chemical, metals, and bacteriological parameters, 25 water samples were collected through deterministic sampling strategy and examined accordingly. The physico-chemical parameters of the water samples collected from the valley were found to meet the World Health Organization (WHO) guidelines of drinking water. The water samples showed a pattern of mean metal concentrations in order of Arsenic (As) > Lead (Pb) > Iron (Fe) > Zinc (Zn) > Copper (Cu) > Magnesium (Mg) > Calcium (Ca). As, Cu, Zn, Ca and Mg concentration were under the WHO guidelines range. However, results showed that Pb and Fe are present at much higher concentrations than recommended WHO guidelines. Similarly, the results of the bacteriological analysis indicate that the water samples are heavily contaminated with the organisms of public health importance (including total coliforms (TCC), total faecal coliforms (TFC) and total fecal streptococci (TFS) are more than 3 MPN/100mL). Three principal components, accounting for 48.44% of the total variance, were revealed using principal component analysis (PCA). Bacteriological parameters were shown to be the main determinants of the water quality as depicted by the PCA analysis. The dendrogram of Cluster analysis using the Ward’s method validated the same traits of the sampling locations that were found to be contaminated during geospatial analysis using the Inverse Distance Weight (IDW) method. Based on these findings, it is most likely that those anthropogenic activities and essentially the tourism results in pollution load from upstream channels. Metals may be released into surface and groundwater from a few underlying sources as a result of weathering and erosion. This study suggests that the valley water resources are more susceptible to bacteriological contamination and as such no water treatment facilities or protective measure have been taken to encounter the pollution load. People are drinking the contaminated water without questioning about the quality. It is recommended that the water resources of the valley should be monitored using standard protocol so as to protect not only the public health but to safe guard sustainable tourism in the valley.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号