首页> 中文期刊> 《理论物理通讯:英文版》 >A Numerical Investigation of Nanocomposite of Copper and Titanium Dioxide in Water Based Fluid Influenced by Instigated Magnetic Region

A Numerical Investigation of Nanocomposite of Copper and Titanium Dioxide in Water Based Fluid Influenced by Instigated Magnetic Region

         

摘要

Presence of external electrical field plays a vital role in heat transfer and fluid flow phenomena. Keeping this in view present article is a numerical investigation of stagnation point flow of water based nanoparticles suspended fluid under the influence of induced magnetic field. A detailed comparative analysis has been performed by considering Copper and Titanium dioxide nanoparticles. Utilization of similarity analysis leads to a simplified system of coupled nonlinear differential equations, which has been tackled numerically by means of shooting technique followed by Runge-Kutta of order 5. The solutions are computed correct up to 6 decimal places. Influence of pertinent parameters is examined for fluid flow, induced magnetic field, and temperature profile. One of the key findings includes that magnetic parameter plays a vital role in directing fluid flow and lowering temperature profile. Moreover, it is concluded that Cu-water based nanofluid high thermal conductivity contributes in enhancing heat transfer efficiently.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号