首页> 中文期刊> 《寒旱区科学:英文版》 >Complex network analysis of climate change in the Tarim River Basin, Northwest China

Complex network analysis of climate change in the Tarim River Basin, Northwest China

         

摘要

The complex network theory provides an approach for understanding the complexity of climate change from a new perspective. In this study, we used the coarse graining process to convert the data series of daily mean temperature and daily precipitation from 1961 to 2011 into symbol sequences consisting of five characteristic symbols (i.e., R, r, e, d and D), and created the temperature fluctuation network (TFN) and precipitation fluctuation network (PFN) to discover the complex network characteristics of climate change in the Tarim River Basin of Northwest China. The results show that TFN and PEN both present characteristics of scale-free network and small-world network with short average path length and high clustering coefficient. The nodes with high degree in TFN are RRR, dRR and ReR while the nodes with high degree in PFN are rre, rrr, eee and err, which indicates that climate change modes represented by these nodes have large probability of occurrence. Symbol R and r are mostly included in the important nodes of TFN and PFN, which indicate that the fluctuating variation in temperature and precipitation in the Tarim River Basin mainly are rising over the past 50 years. The nodes RRR, DDD, ReR, RRd, DDd and Ree are the hub nodes in TFN, which undertake 19.71% betweenness centrality of the network. The nodes rre, rrr, eee and err are the hub nodes in PFN, which undertake 13.64% betweenness centrality of the network.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号