首页> 外文期刊>中国物理:英文版 >Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
【24h】

Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies

机译:基于氧空位调整的基于Ga2O3的非晶硅太阳盲探测器中光电导和光伏工作模式的转变

获取原文
获取原文并翻译 | 示例
       

摘要

We report on the transition of photovoltaic and photoconductive operation modes of the amorphous Ga2O3-based solar-blind photodetectors in metal–semiconductor–metal (MSM) configurations. The conversion from Ohmic to Schottky contacts at Ti/Ga2O3 interface is realized by tuning the conductivity of amorphous Ga2O3 films with delicate control of oxygen flux in the sputtering process. The abundant donor-like oxygen vacancies distributed near the Ti/Ga2O3 interface fascinate the tunneling process across the barrier and result in the formation of Ohmic contacts. As a consequence, the serious sub-gap absorption and persistent photoconductivity (PPC) effect degrades the performance of the photoconductive detectors. In contrast, the photovoltaic device with a Schottky contact exhibits an ultra-low dark current less than 1 pA, a high detectivity of 9.82×1012 cm·Hz1/2·W-1, a fast response time of 243.9 u0016s, and a high ultraviolet C (UVC)-toultraviolet A (UVA) rejection ratio of 103. The promoting performance is attributed primarily to the reduction of the subgap states and the resultant suppression of PPC effect. With simple architecture, low fabrication cost, and easy fusion with modern high-speed integrated circuitry, these results provide a cost-effective way to realize high performance solar-blind photodetectors towards versatile practical applications.
机译:我们报告了基于金属-半导体-金属(MSM)配置的基于Ga2O3的无定形太阳能百叶窗光电探测器的光伏和光电导工作模式的转变。在Ti / Ga2O3界面上,从欧姆接触到肖特基接触的转换是通过在溅射过程中通过精细控制氧气通量来调整非晶态Ga2O3薄膜的电导率来实现的。 Ti / Ga2O3界面附近分布的大量供体样氧空位使穿过势垒的隧穿过程引人入胜,并导致形成欧姆接触。结果,严重的次间隙吸收和持久的光电导(PPC)效应会降低光电导检测器的性能。相比之下,具有肖特基接触的光伏器件表现出低于1 pA的超低暗电流,9.82×1012 cm·Hz1 / 2·W-1的高检测率,243.9 u0016s的快速响应时间以及高的紫外线C(UVC)-紫外线A(UVA)排斥比为103。促进性能主要归因于亚间隙态的减少和对PPC效果的抑制。这些结果具有简单的结构,较低的制造成本以及易于与现代高速集成电路融合的优点,为实现面向多功能实际应用的高性能太阳能百叶窗光电探测器提供了一种经济高效的方法。

著录项

  • 来源
    《中国物理:英文版》 |2019年第2期|67-72|共6页
  • 作者单位

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Wuxi Institute of Technology, Wuxi 214121, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;

    Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;

    Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-19 04:25:23
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号