首页> 中文期刊> 《中国物理:英文版》 >Ultrafast electron microscopy in material science

Ultrafast electron microscopy in material science

         

摘要

Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural dynamics of materials. In this review, we highlight the recent progress of UTEM techniques and their applications to a variety of material systems. It is emphasized that numerous significant ultrafast dynamic issues in material science can be solved by the integration of the pump–probe approach with the well-developed conventional transmission electron microscopy (TEM) techniques. For instance, UTEM diffraction experiments can be performed to investigate photoinduced atomic-scale dynamics, including the chemical reactions, non-equilibrium phase transition/melting, and lattice phonon coupling. UTEM imaging methods are invaluable for studying, in real space, the elementary processes of structural and morphological changes, as well as magnetic-domain evolution in the Lorentz TEM mode, at a high magnification. UTEM electron energy-loss spectroscopic techniques allow the examination of the ultrafast valence states and electronic structure dynamics, while photoinduced near-field electron microscopy extends the capability of the UTEM to the regime of electromagnetic-field imaging with a high real space resolution.

著录项

  • 来源
    《中国物理:英文版》 |2018年第7期|35-47|共13页
  • 作者单位

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;

    Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号