首页> 外文期刊>中国物理:英文版 >Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression
【24h】

Structural phase transition, strength, and texture in vanadium at high pressure under nonhydrostatic compression

机译:非静压下高压下钒的结构相变,强度和织构

获取原文
获取原文并翻译 | 示例
       

摘要

The structural phase transition,strength,and texture of vanadium have been studied under nonhydrostatic compression up to 70 GPa using an angle-dispersive radial x-ray diffraction technique in a 2-fold paranomic diamond anvil cell and up to 38 GPa using an angle-dispersive x-ray diffraction technique in a modified Mao-Bell diamond anvil cell at room temperature.We have confirmed a phase transition from body-centered cubic structure to rhombohedral structure at 27-32 GPa under nonhydrostatic compression.The radial x-ray diffraction data yields a bulk modulus K0 =141(5) GPa and its pressure derivative K0' =5.4(7) for the bcc phase and K0 =154(13) GPa with K0' =3.8(3) for the rhombohedral phase at ψ =54.7°.The nonhydrostatic x-ray diffraction data of both bcc and rhombohedral phases yields a bulk modulus K0 =188(5) GPa with K0' =2.1(3).Combined with the independent constraints on the high-pressure shear modulus,it is found that the vanadium sample can support a differential stress of ~1.6 GPa when it starts to yield with plastic deformation at ~36 GPa.A maximum differential stress as high as ~ 1.7 GPa can be supported by vanadium at the pressure of ~ 47 GPa.In addition,we have investigated the texture up to 70 GPa using the software package MAUD.It is convinced that the bodycentered cubic to rhombohedral phase transition and plastic deformation due to stress under high pressures are responsible for the development of texture.
机译:使用角分散径向X射线衍射技术,在2倍伪造的金刚石砧座中,使用角分散径向X射线衍射技术研究了钒在高达70 GPa的非静水压缩下的结构相变,强度和织构,使用角铁在高达38 GPa的条件下对钒的结构进行了研究。室温下在改进的毛-贝尔金刚石砧室中进行色散X射线衍射技术。我们已经证实在非静水压缩下,从体心立方结构到菱面体结构在27-32 GPa的相变。对于bcc相产生体积模量K0 = 141(5)GPa及其压力导数K0'= 5.4(7),对于ψ= 54.7的菱面体相,K0 = 154(13)GPa且K0'= 3.8(3) °.bcc相和菱面体相的非静力学X射线衍射数据得出的体积模量K0 = 188(5)GPa,K0'= 2.1(3)。结合高压剪切模量的独立约束,得出发现钒样品可以承受〜1.6的微分应力GPa在〜36 GPa时开始塑性变形时开始产生屈服。钒在〜47 GPa的压力下可支撑最大〜1.7 GPa的最大微分应力。此外,我们还研究了高达70 GPa的织构。可以确信,由于高压下的应力,体心立方到菱形的相变和塑性变形是导致纹理发展的原因。

著录项

  • 来源
    《中国物理:英文版》 |2018年第3期|335-341|共7页
  • 作者

    Lun Xiong; Jing Liu;

  • 作者单位

    School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China;

    DaZhou Industrial Technology Institute of Intelligent Manufacturing, Dazhou 635000, China;

    Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;

    Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号