首页> 中文期刊> 《中国物理:英文版》 >First-principles calculations of high pressure and temperature properties of Fe_(7)C_(3)

First-principles calculations of high pressure and temperature properties of Fe_(7)C_(3)

         

摘要

Eckstrom-adcock iron carbide(Fe_(7)C_(3))is considered to be the main constituent of the Earth’s inner core due to its low shear wave velocity.However,the crystal structure of Fe_(7)C_(3)remains controversial and its thermoelastic properties are not well constrained at high temperature and pressure.Based on the first-principles simulation method,we calculate the relative phase stability,equation of state,and sound velocity of Fe_(7)C_(3)under core condition.The results indicate that the orthorhombic phase of Fe_(7)C_(3)is stable under the core condition.While Fe_(7)C_(3)does reproduce the low shear wave velocity and high Poisson’s ratio of the inner core,its compressional wave velocity and density are 12%higher and 6%lower than those observed in seismic data,respectively.Therefore,we argue that carbon alone cannot completely explain the thermal properties of the inner core and the inclusion of other light elements may be required.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号