首页> 中文期刊> 《中华医学杂志:英文版》 >MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis

MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis

         

摘要

Background::Developing effective spinal cord repair strategies for spinal cord injury (SCI) is of great importance. Emerging evidence suggests that microRNAs (miRNAs) are closely linked to SCI recovery. This study aimed to investigate the function of miR-34c in the neuronal recovery in rats with SCI. Methods::A rat model with SCI was established. Differentially expressed miRNAs were identified by a microarray analysis. MiR-34c expression in rats was measured by reverse transcription quantitative polymerase chain reaction. Altered expression of miR-34c or C-X-C motif ligand 14 ( CXCL14) was introduced in SCI rats to measure their roles in neuronal recovery. Western blot analysis was performed to determine the phosphorylation of Janus kinase 2 ( JAK2) and signal transducer and activator of transcription-3 ( STAT3). Neuronal apoptosis in rat spinal cord tissues was detected. The concentrations of SCI recovery-related proteins thyrotropin releasing hormone ( TRH), prostacyclin ( PGI2), and ganglioside ( GM) were evaluated by enzyme-linked immunosorbent assay. Data were analyzed using a t-test with a one-way or two-way analysis of variance. Results::Rats with SCI presented decreased grip strength (112.03 ± 10.64 vs. 17.32 ± 1.49 g, P < 0.01), decreased miR-34c expression (7 days: 3.78 ± 0.44 vs. 0.95 ± 0.10, P < 0.05), and increased CXCL14 expression (7 days: 0.61 ± 0.06 vs. 2.91 ± 0.27, P < 0.01). MiR-34c was found to directly bind to CXCL14. Overexpression of miR-34c increased grip strength (11.23 ± 1.08 vs. 31.26 ± 2.99 g, P < 0.01) and reduced neuronal apoptosis in spinal cord tissues (53.61% ± 6.07% vs. 24.59% ± 3.32%, P < 0.01), and silencing of CXCL14 also increased the grip strength (12.76 ± 1.13 vs. 29.77 ± 2.75 g, P < 0.01) and reduced apoptosis in spinal cord tissues (55.74% ± 6.24% vs. 26.75% ± 2.84%, P < 0.01). In addition, miR-34c upregulation or CXCL14 downregulation increased the concentrations of TRH, PGI2, and GM, and reduced phosphorylation of JAK2 and STAT3 in rats with SCI (all P < 0.01). Conclusion::The study provided evidence that miR-34c could promote neuronal recovery in rats with SCI through inhibiting CXCL14 expression and inactivating the JAK2/ STAT3 pathway. This study may offer new insights into SCI treatment.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号