首页> 中文期刊>植物生态学报 >北方粳稻光合速率、气孔导度对光强和CO2浓度的响应

北方粳稻光合速率、气孔导度对光强和CO2浓度的响应

     

摘要

以东北地区主栽的粳稻(Oryza sativa var.japonica)品种为对象,用美国LI-cor公司生产的Li-6400光合作用测定仪控制光强、CO2浓度和温度等环境条件,阐述了光合作用和气孔导度对光和CO2浓度的响应特征及其耦合关系.结果表明,光合速率随光强或CO2浓度的提高而增大,均遵循米氏响应;在不同CO2浓度下,表观量子效率随CO2浓度的提高而增大,但CO2浓度达到800μmol·mol-1以上时,表观量子效率有所减小;在不同光强下,表观羧化效率也随光的增强而增大,但光强达到1600 μmol·m-2·s-1以上时,表观羧化效率也有所减小;在光强和CO2浓度协同作用下,光合速率的响应遵循双底物的米氏方程,在光强和CO2浓度均趋于饱和时,北方粳稻(品种:辽粳294)剑叶的潜在最大光合速率为71.7378 μmol·m-2·s-1,表观量子效率为0.0560μmolCO2·μmol-1 photons,表观羧化效率为0.1031 μnol·m-2·s-1/μmol·mol-1.气孔导度也随光的增强而增大,对光强的响应规律也可以用MichaelisMenten曲线模拟,而叶面CO2浓度的提高会使气孔导度减小,气孔导度(Gs)对叶面CO2浓度(Cs)的响应可以用Gs=Gmax.c/(1+Cs/Cs0)的双曲线方程模拟.在光强(PFD)和CO2浓度协同作用下,气孔导度可以用式Gs=Gmax(PFD/PFDc)/[(1+PFD/PFDc)(1+Cs/Cs0)]+Gct估算,当CO2浓度趋于0而光强趋于饱和时,北方粳稻的潜在最大气孔导度(Gmax)为0.6709 mol·m-2·s-1.在光强和CO2浓度协同作用下,Ball-Berry模型及其修正形式依然能很好地表达气孔导度-光合速率的耦合关系,并且用叶面饱和水汽压差(Ds)修正耦合关系中的相对湿度可以提高模拟精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号