首页> 中文期刊> 《中国机械工程学报》 >Particle Swarm Optimization-Support Vector Machine Model for Machinery Fault Diagnoses in High-Voltage Circuit Breakers

Particle Swarm Optimization-Support Vector Machine Model for Machinery Fault Diagnoses in High-Voltage Circuit Breakers

         

摘要

According to statistic data, machinery faults contribute to largest proportion of High-voltage circuit breaker failures, and traditional maintenance methods exist some disadvantages for that issue. Therefore, based on the wavelet packet decomposition approach and support vector machines, a new diagnosis model is proposed for such fault diagnoses in this study. The vibration eigenvalue extraction is analyzed through wavelet packet decomposition, and a four-layer support vector machine is constituted as a fault classifier. The Gaussian radial basis function is employed as the kernel function for the classifier. The penalty parameter c and kernel parameter δ of the support vector machine are vital for the diagnostic accuracy, and these parameters must be carefully predetermined. Thus, a particle swarm optimizationsupport vector machine model is developed in which the optimal parameters c and δ for the support vector machine in each layer are determined by the particle swarm algorithm. The validity of this fault diagnosis model is determined with a real dataset from the operation experiment. Moreover, comparative investigations of fault diagnosis experiments with a normal support vector machine and a particle swarm optimization back-propagation neural network are also implemented. The results indicate that the proposed fault diagnosis model yields better accuracy and e-ciency than these other models.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号