首页> 中文期刊> 《中国化学工程学报:英文版》 >Nanoparticle Transport and Coagulation in Bends of Circular Cross Section via a New Moment Method

Nanoparticle Transport and Coagulation in Bends of Circular Cross Section via a New Moment Method

         

摘要

Transport of nanoparticles and coagulation is simulated with the combination of CFD in a circular bend. The Taylor-expansion moment method(TEMOM)is employed to study dynamics of nanoparticles with Brownian motion,based on the flow field from numerical simulation.A fully developed flow pattern in the present simulation is compared with previous numerical results for validating the model and computational code.It is found that for the simulated particulate flow system,the particle mass concentration,number concentration,particle polydispersity, mean particle diameter and geometric standard deviation over cross-section increase with time.The distribution of particle mass concentration at different time is independent of the initial particle size.More particles are concen-trated at outer edge of the bend.Coagulation plays more important role at initial stage than that in the subsequent period.The increase of Reynolds number and initial particle size leads to the increase of particle number concentration.The particle polydispersity,mean particle diameter and geometric standard deviation increase with decreasing Reynolds number and initial particle size.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号