首页> 中文期刊> 《中国化学工程学报:英文版》 >Simultaneous utilization of electro-generated O_(2)and H_(2)for H_(2)O_(2)production:An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation

Simultaneous utilization of electro-generated O_(2)and H_(2)for H_(2)O_(2)production:An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation

         

摘要

The Electro-Fenton(EF)process is one of the promising advanced oxidation processes(AOPs)for environmental remediation.The H_(2)O_(2) yield of EF process largely determines its performance on organic pollutants degradation.Conventional Pd-catalytic EF process generates H_(2)O_(2) via the combination reaction of anodic O_(2) and cathodic H;.However,the relatively expensive catalyst limits its application.Herein,a hybrid Pd/activated carbon(Pd/AC)-stainless steel mesh(SS)cathode(PACSS)was proposed,which enables more efficie nt H_(2)O_(2)generation.It utilizes AC,the support of Pd catalyst,as part of cathode for H_(2)O_(2) generation via 2-electron anodic O_(2) reduction,and SS serve as a current distributor.Moreover,H_(2)O_(2) could be catalytically decomposed upon AC to generate highly reactive·OH,which avoids the use of Fe;.Compared with conventional Pd catalyst,H_(2)O_(2) concentration obtained by PACSS cathode is248.2%higher,the O_(2)utilization efficiency was also increased from 3.2%to 10.8%.Within 50 min,26.3%,72.5%,and 94.0%H_(2)O_(2) was decomposed by Pd,AC,and Pd/AC.Fluorescence detection results implied that Pd/AC is effective upon H_(2)O_(2) activation for·OH generation.Finally,iron-free EF process enabled by PACSS cathode was examined to be effective for reactive blue 19(RB19)degradation.After continuous running for 10 cycles(500 min),the PACSS cathode was still stable for H_(2)O_(2)generation,H_(2)O_(2)activation,and RB19 degradation,showing its potential application for organic pollutants degradation without increase in the running cost.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号