首页> 中文期刊> 《中国化学工程学报:英文版》 >Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower

Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower

         

摘要

Phase change absorbents for CO_(2)are of great interest because they are expected to greatly reduce the heat energy consumption during the regeneration process.Compared with other phase change absorbents,monoethanolamine(MEA)-sulfolane-water is inexpensive and has a fast absorption rate.It is one of the most promising solvents for large-scale industrial applications.Therefore,this study investigates the mass transfer performance of this phase change system in the process of CO_(2)absorption in a packed tower.By comparing the phase change absorbent and the ordinary absorbent,it is concluded that the use of MEA/sulfolane phase change absorbent has significantly improved mass transfer efficiency compared to a single MEA absorbent at the same concentration.In the 4 mol·L^(-1)MEA/5 mol·L^(-1)sulfolane system,the CO_(2)loading of the upper liquid phase after phase separation is almost zero,while the volume of the lower liquid phase sent to the desorption operation is about half of the total volume of the absorbent,which greatly reduces the energy consumption.This study also investigates the influence of operating parameters such as lean CO_(2)loading,gas and liquid flow rates,CO_(2)partial pressure,and temperature on the volumetric mass transfer coefficient(K_(G)α_(V)).The research shows that K_(G)α_(V) increases with increasing liquid flow rate and decreases with the increase of lean CO_(2)loading and CO_(2)partial pressure,while the inert gas flow rate and temperature have little effect on K_(G)α_(V).In addition,based on the principle of phase change absorption,a predictive equation for the K_(G)α_(V) of MEA-sulfolane in the packed tower was established.The K_(G)α_(V) obtained from the experiment is consistent with the model prediction,and the absolute average deviation(AAD)is 7.8%.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号