首页> 中文期刊> 《中国航空学报:英文版》 >Microstructure evolution and mechanical anisotropy of M50 steel ball bearing rings during multi-stage hot forging

Microstructure evolution and mechanical anisotropy of M50 steel ball bearing rings during multi-stage hot forging

         

摘要

This study aimed to explore the evolution of flow lines and microstructures of M50-steel bearing ring and the anisotropy of its tensile mechanical properties after Multi-Stage Hot Forging(MSHF) and subsequent spheroidizing annealing(MSHFA). To this end, the present study mainly employed stereo microscopy, Optical Metallurgical Microscopy(OMM), Scanning Electron Microscopy(SEM), and Electron Backscatter Diffraction(EBSD) to characterize and analyze the workpiece at each processing stage of MSHF while performing microhardness measurement and uniaxial tensile experiment to test and analyze the mechanical properties of the workpiece. Macro-structure observation showed that the simulation results of flow lines at each stage were consistent with the experimental results. Microscopic observation showed that, after MSHF, deformation gradually became less significant along the outward radial direction of the bearing ring. After MSHFA,the microstructures of the bearing ring became uniform, whereas primary carbides did not dissolve.The mechanical properties were better in the axial direction(AD) than in the radial(RD) and circumferential directions(CD) after MSHF due to the smaller grain width. After MSHFA, the mechanical properties in the ADs and CDs were better than those in the RDs, which was due to the large cross-sectional area of carbides along the flow-line direction.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号