首页> 中文期刊> 《中国航空学报:英文版》 >Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method

Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method

         

摘要

An Arbitrary Lagrangian-Eulerian(ALE)approach with interface tracking is developed in this paper to simulate the supersonic parachute inflation.A two-way interaction between a nonlinear finite element method and a finite volume method is accomplished.In order to apply this interface tracking method to problems with instantaneous large deformation and self-contact,a new virtual structure contact method is proposed to leave room for the body-fitted mesh between the contact structural surfaces.In addition,the breakpoint due to the fluid mesh with negative volume is losslessly restarted by the conservative interpolation method.Based on this method,fluid and structural dynamic behaviors of a highly folded disk-gap-band parachute are obtained.Numerical results such as maximum Root Mean Square(RMS)drag,general canopy shape and the smallest canopy projected areas in the terminal descent state are in accordance with the wind tunnel test results.This analysis reveals the inflation law of the disk-gap-band parachute and provides a new numerical method for supersonic parachute design.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号