首页> 中文期刊> 《中国航空学报:英文版》 >Behavior and functional modeling methods of doubly salient electromagnetic generators for aircraft electrical power system applications

Behavior and functional modeling methods of doubly salient electromagnetic generators for aircraft electrical power system applications

         

摘要

The Doubly Salient Electromagnetic Generator(DSEG) is a promising candidate in aircraft generator application due to the simplicity, robustness and reliability. However, the field windings and the armature windings are strongly coupled, which makes the inductance characteristics non-linear and too complex to model. The complex model with low precision also leads to difficulties in modeling and analysis of the entire aircraft Electrical Power System(EPS). A behavior level modeling method based on modified inductance Support Vector Machine(SVM) is proposed. The Finite Element Analysis(FEA) inductance data are modified based on the experiment results to improve the precision. A functional level modeling method based on input–output characteristics SVM is also proposed. The two modeling methods are applied to a 9 kW DSEG prototype. The steady state and transient process precision of the proposed methods are proved by comparing with the experiment results. Meanwhile, the modeling time consumption, the application time consumption and the calculation resource demand are compared. The DSEG behavior and functional modeling methods provide precious results with high efficiency, which accelerates theoretical analysis and expands the application foreground of the DSEG in the aircraft EPS.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号