首页> 中文期刊> 《中国航空学报:英文版》 >Nonlinear bending analysis of a 3D braided composite cylindrical panel subjected to transverse loads in thermal environments

Nonlinear bending analysis of a 3D braided composite cylindrical panel subjected to transverse loads in thermal environments

         

摘要

The aim of this study is to investigate nonlinear bending for a 3-Dimensional(3D)braided composite cylindrical panel which has transverse loads on its finite length. By refining a micro-macro-mechanical model, the 3D braided composite can be treated as a representative average cell system. The geometric structural properties of its components deeply depend on their positions in the section of the cylindrical panel. The embedded elastic medium of the panel can be described by a Pasternak elastic foundation. Via using the shell theory of the von Ka′rma′nDonnell type of kinematic nonlinearity, governing equations can be established to get higherorder shear deformation. The mixed Galerkin-perturbation method is applied to get the nonlinear bending behavior of the 3D braided cylindrical panel with a simply supported boundary condition.Based on the analysis of the braided composite cylindrical panel with variable initial stress, geometric parameter, fiber volume fraction, and elastic foundation, serial numerical illustrations are archived to represent the appropriate nonlinear bending responses.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号