首页> 中文期刊> 《物理学前沿:英文版》 >Local electrical charac terization of t wo-dimensional mat erials with functional atomic force microscopy

Local electrical charac terization of t wo-dimensional mat erials with functional atomic force microscopy

         

摘要

Research about two-dimensional (2D) materials is growing exponentially across various scientific and engineering disciplines due to the wealth of unusual physical phenomena that occur when charge transport is confined to a plane. The applications of 2D materials are highly affected by the electrical properties of these mat erials, including curren t dist ribution, surface pot ential, dielectric response, conductivity, perm计tivity, and piezoelectric response. Hence, it is very crucial to characterize these properties at the nanoscale. The Atomic Force Microscopy (AFM)-based techniques are powerful tools that can simultaneously characterize morphology and electrical properties of 2D materials with high spatial resolution, thus being more and more extensively used in this research field. Here, the principles of these AFM techniques are reviewed in detail. After that, their representative applications are further demonstrated in the local characterization of various 2D materials? elcctrical properties.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号