首页> 中文期刊> 《中国地理科学:英文版》 >An Improved Markov Chain Model Based on Autocorrelation and Entropy Techniques and Its Application to State Prediction of Water Resources

An Improved Markov Chain Model Based on Autocorrelation and Entropy Techniques and Its Application to State Prediction of Water Resources

         

摘要

According to the relationships among state transition probability matrixes with different step lengths, an improved Markov chain model based on autocorrelation and entropy techniques was introduced. In the improved Markov chain model, the state transition probability matrixes can be adjusted. The steps of the historical state of the event, which was significantly related to the future state of the event, were determined by the autocorrelation technique, and the impact weights of the event historical state on the event future state were determined by the entropy technique. The presented model was applied to predicting annual precipitation and annual runoff states, showing that the improved model is of higher precision than those existing Markov chain models, and the determination of the state transition probability matrixes and the weights is more reasonable. The physical concepts of the improved model are distinct, and its computation process is simple and direct, thus, the presented model is sufficiently general to be applicable to the prediction problems in hydrology and water resources.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号