首页> 外文期刊>中国林学(英文版) >Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model
【24h】

Improved simulation of carbon and water fluxes by assimilating multi-layer soil temperature and moisture into process-based biogeochemical model

机译:通过将多层土壤温度和水分纳入基于过程的生物地球化学模型中来改进碳和水通量的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Background: Soil temperature and moisture are sensitive indicators in soil organic matter decomposition because they control global carbon and water cycles and their potential feedback to climatic variations. Although the Biome-Biogeochemical Cycles (Biome-BGC) model is broadly applied in simulating forest carbon and water fluxes, its single-layer soil module cannot represent vertical variations in soil moisture. This study introduces the Biome-BGC MuSo model, which is composed of a multi-layer soil module and new modules pertaining to phenology and management for simulations of carbon and water fluxes. Although this model considers soil processes among active layers, estimates of soil-related variables might be biased, leading to inaccurate estimates of carbon and water fluxes. Methods: To improve the estimations of soil-related processes in Biome-BGC MuSo, this study assimilates ground-measured multi-layer daily soil temperature and moisture at the Changbai Mountains forest flux site by using the Ensemble Kalman Filter algorithm. The modeled estimates of water and carbon fluxes were evaluated with measurements using determination coefficient (R2) and root mean square error (RMSE). The differences in the RMSEs from Biome-BGC MuSo and the assimilated Biome-BGC MuSo were calculated (ΔRMSE), and the relationships between ΔRMSE and the climatic and biophysical factors were analyzed. Results: Compared with the original Biome-BGC model, Biome-BGC MuSo improved the simulations of ecosystem respiration (ER), net ecosystem exchange (NEE) and evapotranspiration (ET). Data assimilation of the soil-related variables into Biome-BGC MuSo in real time improved the accuracies of the simulated carbon and water fluxes (ET: R2=0.81, RMSE=0.70 mm·d?1; ER: R2=0.85, RMSE=1.97 gC·m?2·d?1; NEE: R2=0.70, RMSE=1.16 gC·m?2·d?1). Conclusions: This study proved that seasonal simulation of carbon and water fluxes are more accurate when using Biome-BGC MuSo with a multi-layer soil module than using Biome-BGC with a single-layer soil module. Moreover, assimilating the observed soil temperature and moisture data into Biome-BGC MuSo improved the modeled estimates of water and carbon fluxes via calibrated soil-related simulations. The assimilation strategy is applicable to various climatic and biophysical conditions, particularly densely forested areas, and for local or regional simulation.
机译:背景:土壤温度和湿度是土壤有机质分解的敏感指标,因为它们控制着全球的碳和水循环以及它们对气候变化的潜在反馈。尽管生物群落-生物地球化学循环(Biome-BGC)模型已广泛应用于模拟森林的碳和水通量,但其单层土壤模块不能代表土壤水分的垂直变化。本研究介绍了Biome-BGC MuSo模型,该模型由多层土壤模块和与物候和管理有关的用于模拟碳和水通量的新模块组成。尽管此模型考虑了活动层之间的土壤过程,但与土壤相关的变量的估计可能会产生偏差,从而导致碳和水通量的估计不准确。方法:为了改进Biome-BGC MuSo中与土壤有关的过程的估计,本研究使用Ensemble Kalman滤波算法,对长白山森林通量站点的地面测得的多层日土壤温度和湿度进行了同化。使用确定系数(R2)和均方根误差(RMSE)进行测量,评估水和碳通量的模型估计值。计算了Biome-BGC MuSo和同化的Biome-BGC MuSo的RMSE之间的差异(ΔRMSE),并分析了ΔRMSE与气候和生物物理因素之间的关系。结果:与原始的Biome-BGC模型相比,Biome-BGC MuSo改进了生态系统呼吸(ER),净生态系统交换(NEE)和蒸散(ET)的模拟。实时将土壤相关变量同化到Biome-BGC MuSo中,提高了模拟碳和水通量的准确性(ET:R2 = 0.81,RMSE = 0.70 mm·d?1; ER:R2 = 0.85,RMSE = 1.97gC·m·2·d·1; NEE:R2 = 0.70,RMSE = 1.16gC·m·2·d·1)。结论:这项研究证明,将Biome-BGC MuSo与多层土壤模块一起使用比对Biome-BGC与单层土壤模块进行碳和水通量的季节性模拟更为准确。此外,通过与土壤相关的校准模拟,将观测到的土壤温度和湿度数据吸收到Biome-BGC MuSo中,改善了对水和碳通量的建模估计。同化策略适用于各种气候和生物物理条件,尤其是茂密的森林地区,以及局部或区域模拟。

著录项

  • 来源
    《中国林学(英文版)》 |2019年第2期|87-101|共15页
  • 作者单位

    Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China;

    Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China;

    Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, China;

    Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China;

    Graduate School of Geography, Clark University, Worcester, MA 01610, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号