首页> 中文期刊> 《中国化学快报:英文版》 >Booting the electrochemical properties of Fe-based anode by the formation multiphasic nanocomposite for lithium-ion batteries

Booting the electrochemical properties of Fe-based anode by the formation multiphasic nanocomposite for lithium-ion batteries

         

摘要

Fe-based compounds with good environmental friendliness and high reversible capacity have attracted considerable attention as anode for lithium-ion batteries.But,similar to other transition metal oxides(TMOs),it is also affected by large volume changes and inferior kinetics during redox reactions,resulting in the destruction of the crystal structure and poor electrochemical performance.Here,Fe_(3)O_(4)/C nanospheres anchored on the two-dimensional graphene oxide as precursors are phosphated and sintered to build the multiphasic nanocomposite.XRD results confirmed the multiphasic nanocomposite composed of Fe2O3,Fe_(3)O_(4) and Fe_(3)PO_(7),which will facilitate the Li+diffusion.And the carbonaceous matrix will buffer the volume changes and enhance electron conduction.Consequently,the multiphasic Febased anode delivers a large specific capacity of 1086 mAh/g with a high initial Coulombic efficiency of 87%at 0.1 C.It also has excellent cycling stability and rate property,maintaining a capacity retention of~87%after 300 cycles and a high reversible capacity of 632 mAh/g at 10 C.The proposed multiphasic structure offers a new insight into improving the electrochemical properties of TMO-based anodes for advanced alkali-ion batteries.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号