首页> 中文期刊> 《中国炼油与石油化工:英文版》 >Molecular Simulation of Chain Initiation Mechanism in Oxidation of Lubricant Base Stock

Molecular Simulation of Chain Initiation Mechanism in Oxidation of Lubricant Base Stock

         

摘要

Chain initiation reactions in the oxidation process of lubricant base stock molecules were studied by molecular simulations.Two ways to initiate lubricant oxidation were investigated.They included the dissociation of chemical bonds in base stock molecules and the reaction between base stock molecules and oxygen(O_(2)),respectively.Reaction activation energy of above methods was calculated.The results show that C‒C bonds are more likely to break than C‒H bonds to generate free radicals by the pyrolysis of chemical bonds.The C‒C bonds with tertiary carbon atoms are preferential positions to crack.However,their bond dissociation energy is above 360 kJ/mol,which is difficult to occur under lubricant working conditions.The chain initiation is more likely to occur by the way that O_(2) attacks the two atoms in C‒H bonds at the same time,and is then embedded into the C‒H bond to produce hydrocarbon peroxides.And then,the O‒O bond is cracked to form hydroxyl radicals and alkoxy radicals.The C‒H bonds with tertiary carbon atoms are preferential reaction sites,the reaction activation energy of which is about 190.11 kJ/mol.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号