首页> 中文期刊>中国化学快报:英文版 >Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C_(3)N_(4) for selective photocatalytic oxidation of methyl-phenyl-sulfide with O_(2)

Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C_(3)N_(4) for selective photocatalytic oxidation of methyl-phenyl-sulfide with O_(2)

     

摘要

Efficient generation of singlet oxygen(1 O_(2)) by an excitonic ene rgy transfer process is highly desired on a semiconductor photocatalyst for selective oxidation of methyl phenyl sulfide(MPS).Herein,it is demonstrated that a large amount of 1 O_(2) is produced on pristine graphitic carbon nitride(CN) nanosheet compared with bismuth oxybromide(BiOBr) and comme rcial P25 titanium dioxide(TiO_(2)).This leads to a certain photoactivity of CN for MPS oxidation.The observed ~77% selectivity for CN depends on the competitive results of excitonic energy transfer for 1 O_(2) formation and charge carrier separation for superoxide radical(O_(2)·) production,which are based on the phosphorescence spectra and electron paramagnetic resonance signals,respectively.Moreover,ultrathin CN nanosheets are synthesized by thermal treatment with the cyanuric acid-melamine hydrogen bonded aggregates as precursors.It is confirmed that the amount of produced 1 O_(2) could be increased by decreasing the thickness of resultant CN nanosheets.The optimized ultrathin CN nanosheet(~4 nm) exhibits excellent photoactivity with high selectivity(~99%).It is suggested that the excitonic energy transfer for 1 O_(2) formation is close related to the intrinsic exciton binding energy and the two-dimensional quantum confinement effect.This work establishes a basic mechanistic understanding on the excitonic processes in CN,and develops a feasible route to design CN-based photocatalysts for efficient 1 O_(2) generation.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号