首页> 中文期刊> 《生物医学与环境科学:英文版》 >Prediction of Toxicity of Phenols and Anilines to Algae by Quantitative Structure-activity Relationship

Prediction of Toxicity of Phenols and Anilines to Algae by Quantitative Structure-activity Relationship

         

摘要

Objective To measure the toxicity of phenol, aniline, and their derivatives to algae and to assess, model, and predict the toxicity using quantitative structure-activity relationship (QSAR) method. Methods Oxygen production was used as the response endpoint for assessing the toxic effects of chemicals on algal photosynthesis. The energy of the lowest unoccupied molecular orbital (ELUMO) and the energy of the highest occupied molecular orbital (EHOMO) were obtained from the ChemOffice 2004 program using the quantum chemical method MOPAC, and the frontier orbital energy gap (△E) was obtained. Results The compounds exhibited a reasonably wide range of algal toxicity. The most toxic compound was α-naphthol, whereas the least toxic one was aniline. A two-descriptor model was derived from the algal toxicity and structural parameters: log1/EC50=0.268logKow-1.006△E+11.769 (n=20, r2=0.946). This model was stable and satisfactory for predicting toxicity. Conclusion Phenol, aniline, and their derivatives are polar narcotics. Their toxicity is greater than estimated by hydrophobicity only, and addition of the frontier orbital energy gap △E can significantly improve the prediction of logKow-dependent models.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号