首页> 中文期刊> 《生物医学与环境科学:英文版》 >Analysis of Age Dependent Effects of Heat Stress on EEG Frequency Components in Rats

Analysis of Age Dependent Effects of Heat Stress on EEG Frequency Components in Rats

         

摘要

Objective To demonstrate changes in different frequencies of cerebral electrical activity or electroencephalogram (EEG) following exposure to high environmental heat in three different age groups of freely moving rats. Methods Rats were divided into three groups (i) acute heat stress – subjected to a single exposure for four hours at 38 ℃; (ii) chronic heat stress – exposed for 21 days daily for one hour at 38 ℃, and (iii) handling control groups. The digital polygraphic sleep-EEG recordings were performed just after the heat exposure from acute stressed rats and on 22nd day from chronic stressed rats by simultaneous recording of cortical EEG, EOG (electrooculogram), and EMG (electromyogram). Further, power spectrum analyses were performed to analyze the effects of heat stress. Results The frequency analysis of EEG signals following exposure to high environmental heat revealed that in all three age groups of rats, changes in higher frequency components (β2) were significant in all sleep-wake states following both acute and chronic heat stress conditions. After exposure to acute heat, significant changes in EEG frequencies with respect to their control groups were observed, which were reversed partly or fully in four hours of EEG recording. On the other hand, due to repetitive chronic exposure to hot environment, adaptive and longterm changes in EEG frequency patterns were observed. Conclusion The present study has exhibited that the cortical EEG is sensitive to environmental heat and alterations in EEG frequencies in different sleep-wake states due to heat stress can be differentiated efficiently by EEG power spectrum analysis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号