首页> 中文期刊> 《宝钢技术研究(英文版)》 >Numerical simulation of the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying

Numerical simulation of the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying

         

摘要

In this study,the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numerical simulated by means of a finite element analysis (FEA).The results have illustrated that when the particle impact velocity exceeds a critical value at which adiabatic shear instability of the particle starts to occur.Meanwhile,the fatten ratio and impact crater depth (or the effective contacting area) increase rapidly.The particle-substrate bonding and deposition mechanism can be attributed to such an adiabatic shear deformation induced by both the compressive force and the slide friction force of particle.The critical velocity can be predicted by numerical simulation,which is useful to optimize the CGDS processing parameters for various materials.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号