首页> 中文期刊> 《大气和海洋科学快报》 >Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models

Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models

         

摘要

Using the outputs from 16 chemistry-climate models(CCMs), the trends of lower- to mid-stratospheric water vapor(WV) during the period 1980–2005 were studied. Comparisons were made between the CCM results and European Centre for Medium-Range Weather Forecasts(ECMWF) Interim Reanalysis(ERA-Interim).The results of most of the CCMs, and those based on ERA-Interim, showed the trends of lower- to mid-stratospheric WV during the period 1980–2005 to be positive, with the extent of the trend increasing with altitude. The trend of lower- to mid-stratospheric WV in the ensemble mean of the CCMs was 0.03 ppmv per decade,which was about twice as large as that based on ERA-Interim. The authors also used a state-of-the-art general circulation model to evaluate the impacts of greenhouse gas(GHG) concentration increases and ozone depletion on stratospheric WV. The simulation results showed that the increases of lower- to mid-stratospheric WV affected by the combined effects of GHG and ozone changes happened mainly via warming of the tropopause and enhancement of the Brewer-Dobson circulation(BDC), with the former being the greater contributor.GHG increase led to a higher and warmer tropopause with stronger BDC, which in turn led to more WV entering the stratosphere; while ozone depletion led to a higher and cooler tropopause, which caused the decreases of lowerto mid-stratospheric WV, despite also causing stronger BDC.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号