首页> 中文期刊> 《应用数学和力学:英文版》 >Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium

Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium

         

摘要

The melting phenomenon in two-dimensional(2 D)flow of fourth-grade material over a stretching surface is explored.The flow is created via a stretching surface.A Darcy-Forchheimer(D-F)porous medium is considered in the flow field.The heat transport is examined with the existence of the Cattaneo-Christov(C-C)heat flux.The fourth-grade material is electrically conducting subject to an applied magnetic field.The governing partial differential equations(PDEs)are reduced into ordinary differential equations(ODEs)by appropriate transformations.The solutions are constructed analytically through the optimal homotopy analysis method(OHAM).The fluid velocity,temperature,and skin friction are examined under the effects of various involved parameters.The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter,porosity parameter,and Forchheimer number.The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number,magnetic parameter,and thermal relaxation parameter.Furthermore,the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters,thermal relaxation parameter,and Forchheimer number.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号