首页> 中文期刊> 《应用数学和力学:英文版》 >Interfacial instability of ferrofluid flow under the influence of a vacuum magnetic field

Interfacial instability of ferrofluid flow under the influence of a vacuum magnetic field

         

摘要

This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field.The ferrofluid parabolized stability equations(PSEs)are derived from the ferrofluid stability equations and the Rosensweig equations,and the characteristic values of the ferrofluid PSEs are given to describe the ellipticity of ferrofluid flow.Three numerical models representing specific cases considering with/without a vacuum magnetic field or viscosity are created to mathematically examine the interfacial instability by the computation of characteristic values.Numerical investigation shows strong dependence of the basic characteristic of ferrofluid Rayleigh-Taylor instability(RTI)on viscosity of ferrofluid and independence of the vacuum magnetic field.For the shock wave striking helium bubble,the magnetic field is not able to trigger the symmetry breaking of bubble but change the speed of the bubble movement.In the process of droplet formation from a submerged orifice,the collision between the droplet and the liquid surface causes symmetry breaking.Both the viscosity and the magnetic field exacerbate symmetry breaking.The computational results agree with the published experimental results.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号