首页> 中文期刊> 《应用数学和力学:英文版》 >Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method

Investigation of turbulence and skin friction modification in particle-laden channel flow using lattice Boltzmann method

         

摘要

Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation(DNS) with a lattice Boltzmann(LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow,the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号