首页> 外文期刊>动物模型与实验医学(英文) >Efficient protocols and methods for high‐throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits
【24h】

Efficient protocols and methods for high‐throughput utilization of the Collaborative Cross mouse model for dissecting the genetic basis of complex traits

机译:高通量利用协作交叉小鼠模型剖析复杂性状遗传基础的有效方案和方法

获取原文
获取原文并翻译 | 示例
       

摘要

The Collaborative Cross(CC)mouse model is a next‐generation mouse genetic reference population(GRP)designated for a high‐resolution quantitative trait loci(QTL)mapping of complex traits during health and disease.The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild‐derived strains.Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions.In this article,we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases,including type 2 diabetes and metabolic diseases,body composition,immune response,colorectal cancer,susceptibility to Aspergillus fumigatus,Klebsiella pneumoniae,Pseudomonas aeruginosa,sepsis,and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum,which were conducted at our laboratory using the CC mouse population.These traits are observed at multiple levels of the body systems,including metabolism,body weight,immune profile,susceptibility or resistance to the development and progress of infectious or chronic diseases.Herein,we present full protocols and step‐by‐step methods,implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines,mapping the gene underlying the host response to these infections and chronic diseases.The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits,including chronic and infectious diseases.
机译:The Collaborative Cross(CC)mouse model is a next‐generation mouse genetic reference population(GRP)designated for a high‐resolution quantitative trait loci(QTL)mapping of complex traits during health and disease.The CC lines were generated from reciprocal crosses of eight divergent mouse founder strains composed of five classical and three wild‐derived strains.Complex traits are defined to be controlled by variations within multiple genes and the gene/environment interactions.In this article,we introduce and present variety of protocols and results of studying the host response to infectious and chronic diseases,including type 2 diabetes and metabolic diseases,body composition,immune response,colorectal cancer,susceptibility to Aspergillus fumigatus,Klebsiella pneumoniae,Pseudomonas aeruginosa,sepsis,and mixed infections of Porphyromonas gingivalis and Fusobacterium nucleatum,which were conducted at our laboratory using the CC mouse population.These traits are observed at multiple levels of the body systems,including metabolism,body weight,immune profile,susceptibility or resistance to the development and progress of infectious or chronic diseases.Herein,we present full protocols and step‐by‐step methods,implemented in our laboratory for the phenotypic and genotypic characterization of the different CC lines,mapping the gene underlying the host response to these infections and chronic diseases.The CC mouse model is a unique and powerful GRP for dissecting the host genetic architectures underlying complex traits,including chronic and infectious diseases.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号