首页> 外文期刊>大气科学进展(英文版) >具有Horton及Dunne机制的径流模型在VIC模型中的应用
【24h】

具有Horton及Dunne机制的径流模型在VIC模型中的应用

机译:具有Horton及Dunne机制的径流模型在VIC模型中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

地表径流主要由蓄满(Dunne)和超渗产流(Horton)机制产生;土壤性质的空间变异性、前期土壤水、地形及降水的空间变异性导致不同的径流机制.在研究区域或模型网格内,蓄满产流及超渗产流可能同时出现,缺乏考虑任何一种机制以及土壤性质的次网格空间变率可能导致地表径流的过高或过低估计,从而影响土壤水的计算.利用Philip入渗公式用于时间压缩逼近(TCA)给出了一种径流参数化方法,该方法可以动态实现模型网格中的Horton及Dunne产流机理,它考虑了土壤空间变异性对Horton和Dunne径流的影响.该径流模型应用到基于水文原理的陆面过程模型VIC,在淮河流域及美国宾西法尼亚州的一个流域进行了测试,结果表明:新的参数化方法对地表径流和土壤水分含量的分配起着重要作用,对于改进径流和土壤水的模拟有重要意义.%Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation.
机译:地表径流主要由蓄满(Dunne)和超渗产流(Horton)机制产生;土壤性质的空间变异性、前期土壤水、地形及降水的空间变异性导致不同的径流机制.在研究区域或模型网格内,蓄满产流及超渗产流可能同时出现,缺乏考虑任何一种机制以及土壤性质的次网格空间变率可能导致地表径流的过高或过低估计,从而影响土壤水的计算.利用Philip入渗公式用于时间压缩逼近(TCA)给出了一种径流参数化方法,该方法可以动态实现模型网格中的Horton及Dunne产流机理,它考虑了土壤空间变异性对Horton和Dunne径流的影响.该径流模型应用到基于水文原理的陆面过程模型VIC,在淮河流域及美国宾西法尼亚州的一个流域进行了测试,结果表明:新的参数化方法对地表径流和土壤水分含量的分配起着重要作用,对于改进径流和土壤水的模拟有重要意义.%Surface runoff is mainly generated by two mechanisms, infiltration excess (Horton) runoff and saturation excess (Dunne) runoff; and the spatial variability of soil properties, antecedent soil moisture, topography, and rainfall will result in different surface runoff generation mechanisms. For a large area (e.g., a model grid size of a regional climate model or a general circulation model), these runoff generation mechanisms are commonly present at different portions of a grid cell simultaneously. Missing one of the two major runoff generation mechanisms and failing to consider spatial soil variability can result in significant under/over estimation of surface runoff which can directly introduce large errors in soil moisture states over each model grid cell. Therefore, proper modeling of surface runoff is essential to a reasonable representation of feedbacks in a land-atmosphere system. This paper presents a new surface runoff parameterization with the Philip infiltration formulation that dynamically represents both the Horton and Dunne runoff generation mechanisms within a model grid cell. The parameterization takes into account the effects of soil heterogeneity on Horton and Dunne runoff. The new parameterization is implemented into the current version of the hydrologically based Variable Infiltration Capacity (VIC) land surface model and tested over one watershed in Pennsylvania, USA and over the Shiguanhe Basin in the Huaihe Watershed in China. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere-land coupling system, and has potential applications on large hydrological simulations and land-atmospheric interactions. It is further found that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号