首页> 外文期刊>大气科学进展(英文版) >The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model
【24h】

The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model

机译:磁通形式半拉格朗日输运方案在光谱大气模型中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG.Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion,in comparison with other conventional schemes.Importantly,FFSL can automatically maintain the positive definition of the transported tracers,which was an underlying problem in the previous spectral composite method (SCM).To comprehensively investigate the impact of FFSL on GCM results,we conducted sensitive experiments.Three main improvements resulted:first,rainfall simulation in both distribution and intensity was notably improved,which led to an improvement in precipitation frequency.Second,the dry bias in the lower troposphere was significantly reduced compared with SCM simulations.Third,according to the Taylor diagram,the FFSL scheme yields simulations that are superior to those using the SCM:a higher correlation between model output and observation data was achieved with the FFSL scheme,especially for humidity in lower troposphere.However,the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme.This bias led to an over-simulation of precipitable water in comparison with reanalysis data.Possible explanations,as well as solutions,are discussed herein.
机译:在IAP / LASG上开发并使用的光谱大气GCM中实现了一种通量形式的半拉格朗日输运方案(FFSL)。理想化的数值实验表明,与其他常规方法相比,该方案具有良好的形状保形性,且耗散和色散少重要的是,FFSL可以自动保持所传输示踪剂​​的正定义,这是以前的光谱合成方法(SCM)的一个基本问题。为了全面研究FFSL对GCM结果的影响,我们进行了敏感实验。三大改进结果:首先,降雨模拟在分布和强度上都得到了显着改善,从而导致了降水频率的提高。其次,与SCM模拟相比,对流层下部的干偏明显减少了。第三,根据泰勒图, FFSL方案产生的仿真优于使用SCM的仿真:模型输出与o之间的相关性更高FFSL方案获得了观测数据,特别是对流层下层的湿度。但是,FFSL方案对流层中层和高层的湿气偏向更为明显。与重新分析相比,该偏流导致了对可沉淀水的过度模拟本文讨论了可能的解释以及解决方案。

著录项

  • 来源
    《大气科学进展(英文版)》 |2013年第1期|89-100|共12页
  • 作者单位

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;

    University of Chinese Academy of Sciences, Beijing 100049;

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;

    NOAA/Geophysical Fluid Dynamics Laboratory,Princeton University,Princeton,New Jersey;

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;

  • 收录信息 中国科学引文数据库(CSCD);中国科技论文与引文数据库(CSTPCD);
  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号