首页> 中文期刊> 《先进制造进展:英文版》 >Analysis and optimization of sustainable machining of AISI O1 tool steel by the wire-EDM process

Analysis and optimization of sustainable machining of AISI O1 tool steel by the wire-EDM process

         

摘要

Wire electrical discharge machining(wire-EDM)is an energy-intensive process,and its success relies on a correct selection of cutting parameters.It is vital to optimize energy consumption,along with productivity and quality.This experimental study optimized three parameters in wire-EDM:pulse-on time,servo voltage,and voltage concerning machining time,electric power,total energy consumption,surface roughness,and material removal rate.Two different plate thicknesses(15.88 mm and 25.4 mm)were machined.An orthogonal array,signal-to-noise ratio,and means graphs,and an analysis of vari-ance(ANOVA),determine the effects and contribution of cutting parameters on responses.Pulse-on time is the most significant factor for almost all variables,with a percentage of contribution higher than 50%.Multi-objective optimization is conducted to accomplish a concurrent decrease in all variables.A case study is proposed to compute carbon dioxide(CO_(2))tons and electricity cost in wire-EDM,using cutting parameters from multi-objective optimization and starting values commonly employed to cut that tool steel.A sustainable manufacturing approach reduced 5.91%of the electricity cost and CO_(2)tons when machining the thin plate,and these responses were diminished by 14.09%for the thicker plate.Therefore,it is possible to enhance the sustainability of the process without decreasing its productivity and quality.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号