首页> 中文期刊> 《海洋学报:英文版》 >Distribution of dissolved oxygen and causes of maximum concentration in the Bering Sea in July 2010

Distribution of dissolved oxygen and causes of maximum concentration in the Bering Sea in July 2010

         

摘要

According to data obtained in the Bering Sea during the 4th Chinese National Arctic Research Expedition, the distribution of dissolved oxygen(DO) was studied, causes of its maximum concentration were discussed, and the relationships between DO and other parameters, such as salinity, temperature, and chlorophyll a were analyzed. The results showed DO concentration ranged from 0.53 to 12.05 mg/L in the Bering Sea basin. The upper waters contained high concentrations and the maximum occurred at the depth range from 20 to 50 m. The DO concentration decreased rapidly when the depth was deeper than 200 m and reached the minimum at the depth range from 500 to 1 000 m, and then increased slowly with the depth increasing but still kept at a low level. On the shelf, the DO concentration ranged from 6.53 to 16.63 mg/L with a mean value of 10.75 mg/L, and showed a characteristic of decreasing from north to south. The DO concentration was higher in the area between the Bering Sea and Lawrence Island and was lower in the southeast and southwest of Lawrence Island at the latitude of 62°N. The formation of maximum DO concentration was concerned with phytoplankton photosynthesis and formation of the themocline. To the south of Sta. B07 in the Bering Sea basin, the oxygen produced by photosynthesis permeated to the deeper water and the themocline made it difficult to exchange vertically, and to the north of Sta. B07, the maximum DO concentration occurred above the themocline due to phytoplankton activities. On the shelf, the oxygen produced by phytoplankton photosynthesis gathered at the bottom of the thermocline and formed the DO maximum concentration. In the Bering Sea basin, the DO and salinity showed a weak negative correlation(r=0.40) when the salinity was lower than 33.1, a significant negative correlation(r=0.92) when the salinity ranged from 33.1 to 33.7, and an irregular reversed parabola(r=0.95) when the salinity was greater than 33.7.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号