首页> 中文期刊> 《力学学报:英文版》 >Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression

Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression

         

摘要

In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses.The importance of confinement stresses has been recognized in the literature by many researchers,in particular,its influence on strength and on the angle of fracture,but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks.This paper presents a numerical procedure for the analysis of crack propagation in rock-like materials under compressive biaxial loads.Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied.For this purpose,several biaxial compressive tests on rectangular specimens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D.The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress,however,when the lateral stresses increase,this initiation angle gets wider.Also it is concluded that in addition to the material type,the initiation direction of the secondary cracks depends on confinement stresses,too.Besides,it is understood that secondary cracks may be produced from both tensile and shear mechanisms.

著录项

  • 来源
    《力学学报:英文版》 |2012年第005期|1389-1397|共9页
  • 作者单位

    Mining and Metallurgical Engineering Department,Yazd University, Yazd, Iran;

    Mining and Metallurgical Engineering Department,Yazd University, Yazd, Iran;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号