首页> 中文期刊> 《数学物理学报:B辑英文版》 >MINIMAL PERIOD SYMMETRIC SOLUTIONS FOR SOME HAMILTONIAN SYSTEMS VIA THE NEHARI MANIFOLD METHOD

MINIMAL PERIOD SYMMETRIC SOLUTIONS FOR SOME HAMILTONIAN SYSTEMS VIA THE NEHARI MANIFOLD METHOD

             

摘要

For a given T>0,we prove,under the global ARS-condition and using the Nehari manifold method,the existence of a T-periodic solution having the W-symmetry introduced in[21],for the hamiltonian system z+V'(z)=0,z∈R^N,N∈N^*.Moreover,such a solution is shown to have T as a minimal period without relaying to any index theory.A multiplicity result is also proved under the same condition.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号